Tetrahedron Letters No. 22, pp 2011 - 2014. © Pergamon Press Ltd. 1979. Printed in Great Britain.

EIN EINFACHES UND EFFEKTIVES MODELL ZUR BERECHNUNG VON RINGSTROMANISOTROPIE-EFFEKTEN IM ¹H-NMR-SPEKTRUM VON BENZOIDEN AROMATEN

Gunter Häfelinger

Institut für Organische Chemie der Universität, Auf der Morgenstelle 18 D-7400 Tubingen 1

Die empirische Formel (1) erlaubt die einfache Berechnung der chem. Verschiebung von Ringprotonen benzoider Aromaten aus experimentellen oder Standard-Molekulgeometrien mit einer allen bisherigen Berechnungen vergleichbaren Genauigkeit.

Die Berechnung der chemischen Verschiebung von Ringprotonen benzoider aromatischer Kohlenwasserstoffe basiert auf einer Ermittlung des Ringstromeffektes¹⁾ der π -Systeme, wobei sog. lokale atomare Beiträge^{2,3)}zur beobachteten chemischen Verschiebung durch Wahl von Benzol als Bezugssubstanz eliminiert werden. Die quantenchemischen Berechnungsansätze versuchen entweder direkt die Stromdichte am beobachteten Proton unter Einwirkung des angelegten Magnetfeldes zu berechnen⁴⁾ oder häufiger durch Einführung eines Testdipols am beobachteten Proton das Sekundärfeld zu bestimmen⁵⁾, wobei die letzteren Methoden durch Verwendung der London'schen Theorie des Diamagnetismus⁶⁾ auf die HMO-Theorie beschränkt sind^{7,8)}; aber auch eine SCF-Formulierung im Rahmen der gekoppelten⁹⁾ oder ungekoppelten^{10,11)}Hartree-Fock-Störungstheorie fanden.

Die erste Abschätzung der Stromdichte am beobachteten Proton wurde halbklassisch von Waugh und Fessenden¹²⁾bzw. Johnson und Bovey¹³⁾durchgefuhrt, indem sie annahmen, daß die 6π -Elektronen des Benzols sich frei in zwei Stromschleifen im Abstand von 0.64 Å uber und unterhalb der Benzolringebene bewegen, wobei deren Zusatzfeld in einer komplizierten Formel mittels elliptischer Integrale berechnet wurde, für die praktische Anwendung durch Tabellenwerte aber erleichtert wurde. Auf der quantenmechanischen London-McWeeny-HMO-Näherung basierende Tabellen, die aber von obigen numerisch stark divergieren, sind ebenfalls bekannt¹⁵⁾. Von Haddon¹⁶⁾wurde ebenfalls halbklassisch das Zusatzfeld durch die beiden 6π -Ringstromschleifen im Abstand von 0.60 Å von der Benzolringebene mittels des Biot-Savart'schen Gesetzes berechnet.

Nach Pople¹⁾ist es moglich, den Ringstromeffekt der 6π -Elektronen des Benzols auf die Aromatenprotonen durch einen magnetischen Punktdipol in der Benzolringmitte zu simulieren, wobei die räumliche Verteilung des Dipolfeldes durch die Gleichung von McConnell¹⁷⁾gegeben ist. Statt einem nach dem Elektronengasmodell aus der Ringgeometrie berechneten Ringstrom, kann aber ebensogut die experimentell bekannte diamagnetische Anisotropie des Benzols 18 (-59.7.10 $^{-6}$ cm 3 /Mol) in der McConnell-Gleichung verwendet werden.

Das hier vorgeschlagene neue Modell versucht, die beobachtete chem. Verschiebung bei Aromaten einfach mittels additiver atomarer Punktdipole zu simulieren, die aber in Anlehnung an die Stromschleifenmodelle nicht in den Kohlenstoff-Atomkernen³⁾, sondern im Abstand a oberhalb und unterhalb jedes C-Atoms des π -Systems angebracht sind. Unter Verwendung der McConnell-Gleichung (1) ergibt sich somit eine einfache Methode, um die chem.Verschiebung durch Summation über alle C-Atome aus der experimentell bekannten oder einer Modellmolekülgeometrie zu berechnen.

$$\Delta \delta_{j} = 2 \Delta \chi \sum_{i=1}^{N} \frac{(1 - 3 \cos^{2} \Theta_{p_{i}-j})}{3 R_{p_{i}-j}^{3}} = \frac{2}{3} \Delta \chi \sum_{i=1}^{N} \frac{R_{i,j}^{2} - 2 a^{2}}{(R_{i,j}^{2} + a^{2})^{5/2}}$$
(1)

In Gleichung (1) bedeuten $\Delta \delta_{j}$ = relative chem. Verschiebung des Protons j[ppm]; $\Delta \chi$ = effektive atomare diamagnetische Anisotropie $[10^{-30} \text{ cm}^3/\text{Molekül}]$; R_{pi-j} = Abstand Proton j zum Ort p_i, der sich a Å senkrecht über und unter dem ⁱC-Atom i des π-Systems befindet; Θ_{p_i} -j = Winkel zwischen R_{pi-j} und äußerem Magnetfeld, das senkrecht zur Ringebene angenommen wird; a = Abstand Ringkohlenstoffatom i zum Punkt p_i senkrecht zur Molekülebene; R_{ij} = Abstand C-Atom i zum Proton j in der Ringebene; N = Anzahl der C_i-Atome des π-Systems. Der Faktor 2 berücksichtigt die Wirkung der 2 äquivalenten atomaren magnetischen Punktdipole oberhalb und unterhalb von jedem C-Atom. Der Faktor 3 im Nenner berücksichtigt die statistische Mittelung der Molekülorientierungen senkrecht zum Magnetfeld. Alle Abstände in Einheiten von 10⁻⁸ cm.

Als einen sinnvollen Abstand für a schlagen wir das Optimum der Elektronendichte eines Kohlenstoff 2p-Atomorbitals vor, das nach den optimierten Orbitalexponenten von Clementi et al¹⁹⁾ bei 0.675 Å liegt. In Tab. 1 sind die experimentellen Werte für einige Aromaten, deren Molekülgeometrie experimentell bekannt ist, sowie die nach Gleichung (1) nach der kleinsten Fehlerquadratmethode ermittelten Werte zusammengestellt. Diese experimentelle Justierung liefert $\Delta \chi = -(12.43\pm1.84)$ · 10^{-30} cm³/Molekül, was 1/6 der experimentellen diamagnetischen Anisotropie des Benzols (-16.52·10⁻³⁰) recht nahe liegt.

Der Vergleich der statistischen Analyse der Ergebnisse verschiedener Berechnungsmethoden in Tab. 1 zeigt, daß das neue Modell den anderen wesentlich komplizierteren Berechnungsmethoden vergleichbar ist. Vor allem werden auch für die sterisch behinderten Protonen, wie bereits in Lit³⁾ beobachtet, akzeptable Werte erhalten. Im Gegensatz zur Methode von Barfield et al³⁾resultiert der Hauptanteil an der chem. Verschiebung nicht vom direkt an H_j gebundenem C-Atom, sondern etwa ebensoviel von den beiden Nachbaratomen. Dies läßt sich in Übereinstimmung mit den UCHF-Berechnungen¹⁰⁾ so deuten, daß in unserem empirischmadditiven Modell der Hauptanteil der chem. Verschiebung von den Nachbarbindungen herrührt.

			$\Delta_{\delta_i}^{exp^{20}}$	$\Delta \delta_{i}^{ber}$	$\Delta \delta_{i}^{ber^{3}}$	$\Delta \delta_{i}^{ber^{3}}$	$\Delta \delta_{i}^{\text{ber}^{(8)}}$	$\Delta \delta_{j}^{\text{ber}^{11}}$	$\Delta_{\delta_{j}}^{\text{ber}^{10}}$
Verbindung	н _і	'n	^a b)	c)	ď	еĬ	f)	g)	h)
Methode:			Experimen	nt G1(1)	additive Anisot	atomare ropie	HMO	ungekoppe Störungsi	elte HF- rechnung
Benzo1	1	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Naphthalin	1	4	-0.46	-0.54	-0.44	-0.54	-0.38	-0.59	-0.48
	2	4	-0.11	-0.18	-0.18	-0.16	-0.27	-0.24	-0.21
Anthracen	1	4	-0.66	-0.67	-0.52	-0.66	-0,60	-0,84	-0.70
	2	4	-0.12	-0.25	-0.24	-0.22	-0.31	-0.31	-0.28
	9	2	-1.09	-1.30	-0.89	-1.09	-1,10	-1,16	-0.93
Phenanthren	1	2	-0.53	-0.49	-0.51	-0.63	-0.57	-0.77	-0.63
	2	2	-0.24	-0.27	-0.24	-0.23	-0.36	-0.35	-0.30
	3	2	-0.30	-0.31	-0.27	-0.28	-0.38	-0.27	-0.23
	$4^{\mathbf{x}}$	2	-1.35	-1,16	-0,89	-1.19	-0.77		-0.67
	9	2	-0.38	-0.83	-0.58	-0.71	-0.43	-0.78	-0.67
Triphenylen	$1^{\mathbf{x}}$	6	-1.34	-1.44	-0.95	-1.28	-0.73		-0.73
	2	6	-0.31	-0.45	-0.28	-0.33	-0.36	-0.58	-0.36
Pyren	1	4	-0.73	-0.85	-0.71	-0.77	-0.60	-1.00	-0.88
	3	4	-0.83	-0.76	-0.72	-0.70	-0.99	-0.97	-0.79
	4	2	-0.66	-0.36	-0.40	-0.33	-0.78	-0,65	-0.56
Chrysen	1 *	2	-1.39	-1.53		-1.36	-0.88		-0.90
	2	2	-0.66	-0.93		-0.82	-0.64	-0.81	-0.69
	3	2	-0.63	-0.75		-0.68	-0.65	-0.88	-0.75
	4	2	-0.25	-0.35		-0.31	-0.41	-0.48	-0.41
	5	2	-0.35	-0.39		-0,31	-0,44	-0,41	-0.33
	6 x	2	-1.45	-1.35		-1,27	-0.83		-0.85
Perylen	1 ^x	4	-0.84	-1.36	-0.94	-1.48	-0.46		-0.55
	2	4	-0.11	-0.51	-0.35	-0.50	-0.19	-0.34	-0.32
	3	4	-0.30	-0.93	-0.56	-0.83	-0.36	-0.78	-0.65
Coronen	1	12	-1.55	-0.99	-1.01	-0.92	-1.63	-1.05	
Statistische WP ⁱ⁾ :			94	82	 94	94	78	82	
Analyse (Methode m :			0.99	1.50	1.01	1.02	1.25	1.35	
der kleinsten Fehler ^{k)} :				<u>+</u> 0,15	<u>+</u> 0.13	<u>+</u> 0.16	<u>+</u> 0.11	<u>+</u> 0.18	<u>+</u> 0.22
Fehlerquadrate) b :			0,03	0.17	-0,01	-0.03	0.23	0.14	
fur: $\Delta \delta_i^{\text{ber}}$	-		Fehler ^{k)} :	<u>+</u> 0.12	<u>+</u> 0.08	<u>+</u> 0.13	<u>+</u> 0.09	<u>+</u> 0.13	<u>+</u> 0.13
m•∆δ _i ^{exp} + b			σ ¹):	0.304	0,189	0.315	0.241	0 .26 1	0.255
U			% σ ^{m)} :	20.1%	12.5%	21.0%	14.5%	26.1%	20.3%
			k ⁿ⁾ :	0.812	0.934	0.797	0.887	0.848	0.807

Tab. 1 Experimentelle und berechnete chem.Verschiebungen in [ppm] relativ zu Benzol

<u>Anmerkungen zu Tab. 1</u>: ^x = sterisch behinderte Protonen; a) n = statistisch relevante Anzahl gleicher Protonen; b) Experimentelle Werte bezogen auf Benzol $\delta_j = -7.27$ ppm ;c) Berechnet nach Gleichung (1) mit a = 0.675 Å und $\Delta \chi = -(12.43\pm1.84)$ $\cdot 10^{-30}$ cm³/Molekül und experimentellen Molekulgeometrien mit einem C-H-Bindungsabstand²¹⁾ von 1.10 Å bezogen auf Benzol $\delta_j^{\text{ber}} = -7.23$ ppm; d) Bezogen auf Benzol $\delta_j^{\text{ber}} = -7.23$ ppm; d) Bezogen auf Benzol $\delta_j^{\text{ber}} = -4.396$ ppm; e) Berechnet nach einer (1) ähnlichen Gleichung $\Delta \delta_j = -9.33 \cdot 10^{-30} \cdot \frac{2}{3} \sum_{k} R_{C,H}^{-3}$ [ppm], wobei k über alle nicht im Ring mit dem Proton j befindlichen C-Atome läuft. f) Bezogen auf Benzol $\delta_j^{\text{ber}} = -7.215$ ppm; g) Bezogen auf Benzol $\delta_j^{\text{ber}} = -1.05$ ppm (Methode LA I);h) Bezogen auf Benzol $\delta_j^{\text{ber}} = -0.72$ ppm (Methode LA I +Verbesserung);i) WP = Anzahl der Wertepaare der statistischen Analyse; k)Vertrauensbereich für einen Fehler von 5%; 1) Standardab-weichung der Gesamtkorrelation; m) Prozentuale Abweichung vom gesamten Wertebereich; n) Korrelationskoeffizient.

1) L. Pauling, J. chem. Phys. <u>4</u>, 673 (1936); J.A. Pople, J. chem. Phys. <u>24</u>, 1111 (1956).

- 2) J.I. Musher, J. chem. Phys. <u>43</u>, 4081 (1965); J. chem. Phys. <u>46</u>, 1219 (1967);
 Adv. in Magn. Res., Vol. 2, Academic Press, London 1966; J.M. Gaidis und
 R. West, J. chem. Phys. <u>46</u>, 1218 (1967).
- 3) M. Barfield, D.M. Grant und D. Ikenberry, J. Am. Chem. Soc. <u>97</u>, 6956 (1975).
- 4) A.T. Amos und H.G.F. Roberts, Molec. Phys. <u>20</u>, 1073, 1081, 1089 (1971).
- 5) R. McWeeny, Molec. Phys. <u>1</u>, 311 (1958);J.A. Pople, Molec. Phys. <u>1</u>, 175 (1958).

6) F. London, J. Phys. Radium, Paris <u>8</u>, 397 (1937).

- 7) N. Jonathan, S. Gordon und B.P. Dailey, J. chem. Phys. <u>36</u>, 2443 (1962).
- 8) C.W. Haigh,R.B. Mallion und E.A.G. Armour, Molec. Phys. <u>18</u>, 751 (1970).
- 9) G.G. Hall, A. Hardisson und L.M. Jackman, Tetrahedron Suppl. 2,19,101 (1963);
 G.G. Hall und A. Hardisson, Proc. Roy. Soc. (London) A<u>268</u>, 328 (1962).

10)H.G.Ff. Roberts, Theor. Chim. Acta <u>15</u>, 63 (1969); Molec. Phys. <u>27</u>,843 (1974). 11)E.R. Long und J.D. Memory, J. chem. Phys. <u>61</u>, 3865 (1976).

- 12) J.S. Waugh und R.W. Fessenden, J. Am. Chem. Soc. 79, 846 (1957).
- 13)C.E. Johnson und F.A. Bovey, J. chem. Phys. 29, 1012 (1958).

14)F.A. Bovey "Nuclear Magnetic Resonance Spectroscopy" Academic Press, New York 1969.

- 15)C.W. Haigh und R.B. Mallion, Org. Magnet. Res. <u>4</u>, 203 (1972).
- 16)R.C. Haddon, Tetrahedron 28, 3613, 3635 (1972).
- 17)H.M. McConnell, J. chem. Phys. 27, 226 (1957).

18) J. Hoarau, N. Lumbroso und A. Pacault, Compt. Rend. 242, 1702 (1956).

19)E. Clementi und D.L. Raimondi, J. chem. Phys. <u>38</u>, 2686 (1963).

- 20)C.W. Haigh und R. B. Mallion, Mol. Phys. <u>18</u>, 737 (1970).
- 21)K. Tamagawa, T. Tijima und M. Kimura, J. Mol. Struct. <u>30</u>, 243 (1976).

(Received in Jermany 23 January 1979)